TSB – MHS Ontology Methods of Creation, Maintenance and Extraction

Mariana Casella dos Santos, MD James Flanagan, MD, PhD Language and Computing

AHIMA 2005

Language Computin

Presentation Overview

- What is the TSB and Why?
- TSB mappings desiderata
- Methods of mappings creation and maintenace

Methods of mapping extraction

What is the TSB and Why?

- Terminology Service Bureau (TSB) is designed to meet the terminology requirements of the Composite Health Care System II (CHCS II), the computer-based Patient Record (CPR) System for the Department of Defense (DoD) Military Healthcare System (MHS).
- CHCS II collects medical data from all healthcare services within the DoD.
 - Must handle conflicting data and terminology standards.
 - Must optimize and improve the integration and transmission of medical information throughout the MHS.
- CHCS II must cope with integrations of additional software components and their associated terminologies.
 - 3M's HDD was responsible for standardizing the terms used to capture clinical information
 - new terminology identified mapped into the HDD available to be used by clinical applications
 - Mappings must be performed by 3M
 - Inability to generate updates for the original terminologies mapped or components using these terminologies

TSB Purpose: Incorporate and relate multiple terminologies into one overarching data model that is capable of generating updates based on this integrated ontology/terminology for each of the runtime components that require terminology content.

Desiderata for TSB Mappings and Mapping-related Processes

- Ability to deliver on time and on budget
- Secure reliability of mapped information
- Mapping efforts are cumulative and publicly available
- Mappings must serve a multiplicity of disparate applications
- Mitigate the differences introduced by existing medical information sources
 - hybridism of principles or perspectives embedded in their hierarchical structure
 - divergence of meaning attributed to their language descriptions

TSB is Portable and Partitionable

Terminology Service Bureau The Big Picture

Language and Computing

TSB Mapping Framework The Meta and the Domain

TSB Mapping Framework The Meta and the Domain

Ontology for Alignement The Meta and the Domain

Ontology for Alignement The Meta and the Domain

Reusability of Mappings

Mapping Terminologies Lexical Layer Issues

Lexical Variations Match with Upper Level Constraints

- Defining allowable lexical variations of a term, based on analysis of the hierarchical structures of the terminologies.
- Generation of an equivalence model for distinctive lexical representations identified as synonymous within the scope of both terminologies being mapped, utilizing regular expressions.
- Setting specific constraints to restrict realm of mappings based on terminologies hierarchical branches.
- Applying secure lexical match-based mapping algorithm utilizing the lexical variants equivalence model created.

Lexical Variations Match with Upper Level Constraints

Pattern of equivalence found:

Ö-● MEDCIN ENTITY
Ö-● MEDCIN : 6000 : PHYSICAL EXAMINATION
Ö-● MEDCIN : 6425 : EXAMINATION OF THE EYES
Ö-● MEDCIN : 11815 : RETINA

PH-● MEDCIN : 6665 : CHORIORETINITIS

SNOMED-CT: 118897002: PROCEDURE ON EYE (PROCEDURE)

→ SNOMED-CT: 118910000: PROCEDURE ON POSTERIOR SEGMENT OF EYE (F

→ SNOMED-CT: 118906003: PROCEDURE ON RETINA (PROCEDURE)

→ SNOMED-CT: 274798009: EXAMINATION OF RETINA (PROCEDURE)

→ SNOMED-CT: 112965005: DIAGNOSTIC PROCEDURE ON RETINA (PROCEDURE)

Expression on Equivalence Model: (.*) = examination of (.*)

Setting costraint for defined expression:

Concept A with term "(.*)" **MAPS TO** Concept B with term "examination of (.*)" if and only if: Concept A IS-A **MEDCIN**: 6000: PHYSICAL EXAMINATION

Secure Mapping Algorithm

Invalid exact string matches

Domain concept C

term k

*Occurs for 'untruth' synonyms.

Language and Computing

Medical Terminologies/Ontologies Different Perspectives

IS-A Link Defined Perspective for MHS Ontology

 Axiom: If concept A is-child-of (IS-A) concept B then every instance of A is a instance of B.

Every instance of viral meningitis is an instance of meningitis.

IS-A Link Common Uses in Medcal Terminologies

Causality ABSCESS IS-A PASTEURELLA ABSCESS

Parthood

Transposing Hierarchies from Mapped Terminologies

```
● MEDCIN CATEGORY

● MEDCIN ENTITY

● MEDCIN: 6000: PHYSICAL EXAMINATION

● MEDCIN: 7358: EXAMINATION OF THE ABDOMEN

● MEDCIN: 7436: ABDOMEN HERNIA

● MEDCIN: 10297: ABDOMEN HERNIA INGUINAL

● MEDCIN: 10299: INQUINAL HERNIA RIGHT

● MEDCIN: 10300: INGUINAL HERNIA BILATERAL

● MEDCIN: 263357: INGUINAL HERNIA TENDER

● MEDCIN: 62509: INGUINAL HERNIA NOT REDUCIBLE
```

<u>Motivation:</u> When new terminology is mapped many concepts are introduced in the MHS core ontology 'hanging loose' (w/o an identified parent concept) and structuring is lacking. Identifying and transferring these smaller hierarchies onto the domain can drastically reduce the manual modeling effort.

- Analysis of the terminology for the identification of certain 'cutting points' – concepts that are at the top of a small hierarchy with ontologically valid IS-A relations.
- Analysis of the terminology for the identification of hierarchical levels where IS-A relations are always valid.
- Transposition Procedure utilizing 'cutting points' and hierarchical levels identified.

Transposing Hierarchies from Mapped Terminologies

'Cutting Point' Methods:

AYw

Transposing Mapped Terminologies Hierarchies

Transposing Mapped Terminologies Hierarchies

Language and Computing

Transposing Mapped Terminologies Hierarchies

Exporting the Mappings

Configurable Exports:

```
e.g. <u>MEDCIN ID</u> <> SNOMED CT PT <> SNOMED CT FSN <> SNOMED CT ID or 
<u>SNOMED CT PT</u> <> PKC ID <> MEDCIN ID
```

 Extracting 'One to One', 'One to Many and/or 'Many to One' mappings by traveling the domain hierarchy.

Mapping Extraction 'Many to One'

*As MHS domain modeling evolves post-coordinated mappings extraction becomes also possible.

Mapping Extraction 'One to Many'

Conclusions

Mapping Processes Key Words Reusability and Flexibility

Clinical Vocabulary Mapping Methods Institute Saturday, October 15, 2005